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 Abstract  

   If we consider the “Fifth force” as an external force of the classical newtonian 
gravitational field introduced in the Theory of General Relativity, we will obtain the new 
modified Einstiens’ field equations. 
   We unify the "Fifth Force" with the "Gravitational Force" applying the Theory of General 
Relativity. The result is that probably the "new modified Einstein's field equations" will not 
present any kind of singularity with the presence of the "Fifth Force". Peculiar 
phenomenologies on stars and galaxies nucleus, the expansion or not of the universe can 
be fairly treated with the new modified Einstein's field equations. 
   It is well known that General Theory of Relativity is a geometric theory of gravitation and 
the curvature of spacetime is related to the energy and momentum. This relation is 
specified by Einstein’s equations. The experimental tests are numerous and, therefore, it is 
impossible to question its validity but this does not prevent us from proposing new ideas.       
In this work, we want to introduce the Fifth Force, not considering the universal 
gravitational constant. In this way we obtain modified field equations. The aim of the paper 
is to observe that, if we introduce this fifth force, the principle of the equivalence is violated 
and, probably, there are never singularities in the metric when we solve the field 
equations.  
   Maybe the Schwarzschild radius for a symmetrical static spherical star doesn’t compare: 
to be proved with “computational mathematics”. 
   Throughout the paper, the symbols refer to the textbook of Weinberg , considering even 
the speed of light as c=1.  
 
 
Resuming the Principle of Equivalence 
The principle of equivalence is the fundamental hypothesis for the theory of general 
relativity. But if we consider the fifth force it must be considered the following two points: 

1) A potential breakdown of the principle of equivalence has a remarkable geometrical 
explanation in the framework of extended theories of gravity, if one assumes an 
explicit coupling between an arbitrary function of the scalar curvature, R, and the 
Lagrangian density of matter, [1]. On the other hand, one must be very careful when 
assuming potential deviations from the principle of equivalence, which has today 
unchallengeable empiric evidence, at least on Earth, [2]. Thus, one must be able to 
argue that such deviations could, eventually, work at astrophysical and/or 
cosmological scales. An interesting mechanism which can permit this approach has 
been developed, for example, in [3 ]. 

2) Otherwise, if we try to include the fifth force in some equations of general relativity 
theory, as an external force, and find out how to find the solutions of the metric 
tensors gij, probably there aren’t any *singularity (as we shall do in a future paper). 

The principle of equivalence means that the inertial mass mi of an object is equal to its 
gravitational mass mg: mi=mg. Different from formula (1). 
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 Introduction of the fifth force 
What is the fifth force?  
If we consider two nucleons of mass m1 and m2, they will exert a gravitational potential 
energy of the following form ([5]-[8], formula of Gibbons and Fischbach without singularity): 
 
(1) U12  = -G m1 m2 (1+  e-  r1,2 )/ r1,2   
where G is the universal gravitational constant (G=6.673*10-11 Nm2/kg2), corrected by =0.01:0.001, which is the intensity of the fifth force, called ipercharge, that depends on the relative amount of neutrons upon number of protons per nucleon, in range  -1 =100:1000 meters,  ( if  can be a positive or a negative quantity). 
The property of this phenomenological formula (1) in confront of Newton’s gravity law is 
that it hasn’t any *singularity. In fact:  
 
(2) lim r1,2 -->0(1+ e- r1,2)/ r1,2  =  ≠ .   (theorem of De Hopital for limits). 
 
We know that in General Relativity Theory the Einstein Field Equations derived from the 
Newtons formula, (see [9] (7.1.3) and (7.1.12)), have the presence of singularity for 
propagation. If the radius of the star reaches the Schwarzschild radius (1=2Gm(R)/R), the 
metric tensor A(r)=grr=1/(1-2Gm(r)/r), (see [9] (11.1.11)) gives the presence of black holes. 
But if we use the corrected gravitational potential [5] without *singularity, modifying the 
Einstein Field Equations; probably the new Einstein Field Equations shall become without 
the presence of *singularity; it is amazing. 
We know that the gravitational potential (r2 ) at point r2 , with distribution of matter density 
(r1), as a spherical star, is (see [10] (3.1a)):  
(3)                                (r2 ) = -G  d3r1 __(r1_)__  
                                                                 | r2  - r1 |  
and the fifth force potential 5 (r2 ) at point r2, that depends on the amount of neutrons 
upon the number of protons per nucleon in the star matter (or depends even from 
antimatter properties to be investigated), is (See [10] (3.1b)): 
 
(4)                             5(r2 ) = -G   d3r1 __(r1_)__ e-| r2  - r1 | 
                                                                    | r2  - r1 |  
The Laplacian equations of both the fields above are respectively (see [10] (3.2a) and 
(3.2b)): 
 
(5) 2=4G                        (Newtonian field equation) 
 
(6) (2 - 2)5=4G               (Fifth force field equation) 
 
Where the Laplacian operator is defined 2= (2/x2)+ (2/y)+ (2/z2).  These two 
Poissan’s field equations shall be used after to find the new modified Einstein’s field 
equations. 
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The geodetic equation  inserting the fifth force 
We follow the same calculations of  Chapter 3.2 Weinberg 1972, to find the geodesic 
equation adding the fifth force: considering it as an “external force”, acting upon the 
gravitational field. We need to find this type of geodesic equation to modify the Einstein 
field equation, acting with metric tensor, goo, (see its formula (24)). 
Considering the fifth force f5 acting on a particle of mass m, immersed in the gravitational 
field, detected by a free falling coordinate system  , where its equation of motion is a 
straight line in space-time (see [9] (3.2.1), (3.2.2) and [11] chapter 8, n°58): 
  
(7a)              f5() /m     =  g() [f5() /m]  =  d2       with d2= - d  d    
                                                                          d2 
With    the Minkowski tensor: = +1 for ==1,2 or 3 else = -1 for ==0  else = 
0 for ≠. Where the metric tensor g()  function of   is (see [9] (2.5.6)): 
 
(7b)          g()= ,     g()=     and satisfies  g()g()=     
with  the Kroenecker tensor: =+1 for =, and = -1 for ≠. 
So using any other coordinate system x  , the free falling coordinates   are functions of 
the x, and  from (7a) we have the geodetic equations as (see [9] (3.2.3),(5.1.11) and 
(5.1.12); and [11] chapter 8, n°68-69; [12] (10.24)): 
 
(8)                          [ f5() /m]  x     =   d2    x     = d2 x   +  

   dx   dx 
                                                              d2                 d2                          d    d 
 
with x  which are the four coordinates of the particle moving along its trajectory, and the 
first member appears with variable ; and where  the proper time d2= - g(x)dx dx and 
   is the Christoffel symbol  with the metric tensor g(x)  function of x  
(see [9] (3.2.4) ,(3.2.6), (3.3.7)): 
 
(9a)                    = x   2    = ( g/2){  (g/x) + (g/x) - (g/x)  } 
                                       x x      
 
where (see [9] (3.2.7) or (4.2.6)): 
 
(9b)                                         g(x)  =                                                                                 x     x      
The fifth force f5 is the gradient of it’s potential 5 , valid for a conservative field and 
depending on the coordinate x , (see [9] (4.7.1), (4.2.4) and [11] chapter 5- n°10, chapter 
8-n°58): 
 
(10)                       f5() /m= -(5/  )   
 
“valid for a conservative field of f5”.  
But the coordinate transformation implies (see [9] (4.2.4)): 
 
(11)                                         5/  =   5   x         
                                                                 x                  
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So the first member, in variable  , of (8) becomes with (7a), (10) and (11) with the new 
variable x: 
 
(12)    [f5()/m] x = g() [f5() /m)] x = - g() (5/  )  x  = - g()( 5   x ) x =              
                                                                                                                                         x             
 
  =   -    g(x)  5                        x                                          
 
because: 
  
g() x  x   = g(x) as contravariant tensor (see (7a) and [9] (4.2.7)).                     
 
The geodetic equation (8), with the fifth force considered as an external force upon the 
gravitational field, all in coordinates x, becomes, using (12):    
(13)                                  -    g(x)   5    =  d2 x   +     dx   dx                                                                                     x               d2                       d    d 
(see [9] (5.1.11)). 
We will use it to find the metric tensor of time, goo, in Newtonian limit to modify the Einstein 
field equation with the fifth force.  
And knowing that U   =  dx / d is the four-vector velocity of a falling object; multiplying U, in both sides of (13) we have: 
  
(13a)    -    g(x)  (5 / x ) U   = (dU / d) U   +     U  U  U ,    
U, satisfying the condition: 
 
(13b)        1= - g(x) UU, 
 
useful to find the potential function of the fifth force, 5, (knowing g(x)),  instead of using 
the phenomenological Yukawa-Newtonian expression (4).  
The Newtonian limit with the fifth force to find the metric tensor of time goo 
We want to find the dependency of the metric tensor goo  upon the potential of the 
gravitational field  and the potential of the fifth force 5.  This shall be useful to obtain the 
Einstein’s field equations with the fifth force, following the same calculations of  Chapter 
3.4 Weinberg 1972, but violating  the principle of equivalence.  
In the Newtonian limit considering a particle moving slowly in a weak stationary 
gravitational field in presence of the fifth force, neglecting dx/d respect to dt/d and using 
(13), we have the equation of motion: 
 
 
(14)                                        d2 x   +  oo   (dt/ d)2   = -(5/x) g(x)                    
                                               d2                     
 
(15)                                         d2t/ d2   = 0    which implies dt/d  = constant1 = a. 
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In the “nearly” Cartesian coordinate system, we adopt the metric tensor in a weak field as 
(see [9] (3.4.1)): 
 
(16)                                         g  =  + h      ,      | h|<<1              
 
where = +1 for ==1,2 or 3 else = -1 for ==0  else = 0 for ≠. 
Since the field is stationary and putting the first order of  h , we have (see [13] (6.15) and 
[14] (17.18)): 
 
(17)                       oo   = (-1/2) g (goo /x) =  (-1/2)    (hoo /x)    
 
Substituting this in equation (14) gives (see [9] (10.1.7a),(3.3.6)): 
 
(18)                d2 x/d2  +  (-1/2)    (hoo /x) (dt/ d)2   = -(5/x) ( - h )    
 
but   g g~( + h)( - h ) =    implies gg= =1 or better (1+ h)(1- h)=1  
which gives h= h/(1+ h) so  h ~ h

 <<1  for condition (16). And (18) becomes the 
equation of motion:                           
 
(19)                              d2 x   =  (1/2)  (dt/ d)2   hoo  -   5                                          d2  
 
so dividing this equation by  (dt/ d)2  we have (see [9] (3.4.2)): 
 
(20)                              d2 x   =  (1/2)    hoo  -  (d/ dt)2   5                                             dt2                                                                
The corresponding newtonian result is (see [9] (3.4.3)): 
 
 
(21)                                          d2 x   = -      -     5                                                       dt2      
 
where  is the Newtonian potential, (3), (5). And comparing (20) and (21) we find: 
 
(22)                       (1/2)    hoo  -  (d/ dt)2   5    =    -      -     5             
for these equalities and with (15), 
 
(23)                                  hoo  = -2 k 5    - 2  + constant2,        
 
where k = 1- (d/ dt)2  = 1 – (1/a) 2. 
 
Constant2=0 because the coordinate system becomes Minkowskian at infinity: so hoo=0 for 
r , as even =0  and  5 =0 from (3) and (4).    
So the metric tensor of time goo becomes with (16), ( see [9] (3.4.5)): 
 
(24)                                     goo  = - (1 + 2 + 2 k 5  )                    
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It’s added a potential term as, 2 k 5,    which represents the presence of the fifth force. 
We shall see in the next chapter the necessary use of formula (24) to obtain the new 
Einstein’s field equations. 
 Einstein’s  field equations modified with the fifth force 
Now following Chapter 7.1 Weinberg 1972 and it’s discussions, violating  the principle of 
equivalence and introducing the fifth force in an opportune way in the same equations; we 
have summing the members of the two Laplacian equations (5) and (6) as: 
 
(25)                         2 ( + k5)=4G + k [ 4G + 25] ,       
in system with equation (6), whose variable functions are  and 5.  
And using equation (24) and the approximation for non-relativistic matter Too ≈ , for a 
weak static gravitational field, we obtain from (25), (see [9] (7.1.3)(7.1.4)): 
 
(26)                            2 goo = -8G Too (1 + k)  - 2 k [ 25]    
We see that the last term of equation (26) is only a scalar function, 2 k [ 25],   without 
two indexes 00, as the terms goo and Too, so it cannot transform as a tensor of rank 2, with 
two indexes, to be written in a covariant form. This tells us to go beyond the calculus to 
substitute this scalar function in some way. 
 
So we will apply again the Laplacian operator, 2, in both members of equation (26), 
having: 
 
(27)                2 k 2 2 5  = (1 + k)  2 [(-8G) Too ] – 2 [2 goo],  
In which are considered constant the terms k, ,   (see formula (1)); instead the term,  
(-8G), is to be considered not as the famous universal gravitational constant, but as a 
scalar function of the coordinates,  x , influenced by the presence of the “fifth force” (see 
(1), and in a further chapter here we will mention about it). 
 
But from (6), substituting the density of mass with the energy-momentum tensor, Too ≈ , 
becomes: 
 
(28)                               2 5  = 2 5  - (4G)  Too  
Substituting (28) to equation (26): 
 
(29)                      2 goo = (-8G) (1 + k) Too - 2 k [2 5  - (4G)  Too]    
and finally substituting (27) to (29), we have: 
 
(30)  2goo = (-8G)(1+k)Too– {[(1 + k)/2] 2 [(-8G)Too] – 2 [2goo]/2 + (-8G)k Too]}  
which instead of a weak stationary gravitational field, we consider the general case of 
relativity, to have the new Einstein’s field equations modified by the presence of the fifth 
force, with 2 goo  associated to the “Einstein’s tensor” Gij = Rij  - (1/2) gij R, (see [9] chapter 
7.1, (7.1.8), (7.1.13)).  



7 
 

So transforming the term 2goo ≈ G00 ≈ Gij= Rij  - (1/2) gij R,  the term goo ≈  gij, the Too ≈  Tij, and the classical Laplacian operator 2, (used for a space of 3 dimensions), to a 
d’Alembertian operator 2 (necessary for a space of 4 dimensions, instead of 3), in 2  ≈  
2 , (see Weinberg method passing from the Newtonian limit to general relativistic 
gravitation field [9] using (7.2.4)&(7.2.5)), and even considering the  transformation of term 
 2 [2goo]/2 ≈ 2 [Rij -(1/2)gijR]/2; so the equation (30) from its Newtonian limit becomes 
in the general case:    
(31)              Rij -(1/2)gijR =(-8G)(1+k)Tij + 
                                    – {[(1+k)/2] 2 [(-8G)Tij] – 2 [Rij -(1/2)gijR]/2  +(-8G)k Tij]} 
 
Where the d’Alembertian operator 2 is defined as, (see [15] (53.07); see [11] chapter 8, 
page 174; and [9] (4.4.1)):  
 
(31a)     2 f= (1/√|g|) {[(√|g|)(gbc)(f/xc)]/xb} = [(gbc)(2f/xbxc)] – gbc  abc (f/xa) , 
 
where  g ≡ - Determinant(gij).                     
Note: in a justified opinion and discussion from external researchers and in a future paper, instead of the d’Alembertian 
operator of Fock V. 1959 (53.07) used for curvature space, it could be used Weinbergs d’Alembertian, applied especially 
in special relativtity flat space, which is defined as, (see [9] (2.5.12)):  
(31b)           2 = ηjk(/xk)(/xj) = 2 - 2/2t. 
 
There is an ambiguity in using the d’Alembertian (31a) or (31b) on various relativistic papers that we consulted, 
especially in the Weinberg’s book, instead of Fock V. book (1959) “The theory of space, time and gravitation”, (53.07).  
In my point of view and opinion it’s better to use operator (31a) for curvature space, transforming the classic Laplacian, 
2, (see (5) and (6)) to a d’Alembertian operator,  2:  2 ≈  2.  
 
In a “complete and general” form the field equations, considering (-8G) a scalar function, 
looks as: 
 
(32)             Rij -(1/2)gijR - 2 [Rij -(1/2)gijR]/2  = (-8G)Tij – {[(1+k)/2] 2 [(-8G)Tij]} 
 
For the considerations of point (B) of [9] chapter 7.1, where Gij must have the dimensions 
of a second derivative, (see formulas (5) and (6)); the  term,  
2[2goo]/2 ≈ 2 [Rij -(1/2)gijR]/2, is of fourth derivative of the metric components, gij, and 
will become negligible for gravitational fields of sufficiently large space-time scale:  
Rij -(1/2)gijR >>2 [Rij -(1/2)gijR]/2.  
So for this approximation, and considering (-8G) = (-8G/c4  for velocity of light, c=1), not 
a constant, but a scalar function, (32) becomes finally the new Einstein’s field equations 
modified by the presence of the fifth force: 
 
(33)                Rij -(1/2)gijR  = (-8G)Tij -  { [(1+k)/2] 2 [(-8G) Tij ]}= 
                                           ={(-8G) -  [(1+k)/2] 2 [(-8G)]}Tij – [(1+k)/2](-8G)2Tij 
 
where Tij is the energy-momentum tensor (see [9] chapter 5.3), and Rij is the “Ricci 
tensor”, (see [9] (6.2.4),(6.1.5),(8.1.12)):  
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(34)                    R =   /x    -    /x     +          -      
For the presence of the “fifth force” in the gravitational field, (1), the universal gravitational 
constant, (-8G), shall be assumed as a scalar function of the space-time coordinates, x, 
and no more considered a constant: see the next chapters.   
Using another independent equation the density of force G    
If we take the following independent equation of general relativity theory (see [9] (5.3.2), 
(2.8.6)): 
 
(35)                                               T; = G  
 
Where G   is the “density of force”, f5, acting externally on the system, it can be found as 
expression of a function of the fifth force potential: G   = f (5). For an isolated system,  
G =0. But in our case the gravitational field doesn’t seem an isolated system, because the 
“Fifth force” was treated as an external force upon the field, to find the geodetic equation 
(13) and then goo from formula (24). About this statement, the energy-momentum tensor is 
not considered conserved, so, T; ≠ 0. 
The covariant derivative of the energy-momentum tensor is (see [9] 1972 (4.7.9)): 
 
(36)                                 T; = (T /x) +  T +  T 
 
The covariant differentiation of the first member of (33) must be zero for the “Bianchi 
identity”, (see [9] (6.8.4) or (7.1.6), or because, with careful logic, the energy-momentum 
tensor, if its conserved with the fifth force, it must be T; = 0), it means that the following 
condition must be satisfied: 
 
(37)                                               0 =  Gij ; i  = (Rij  - (1/2) gij R) ; i    
Where Gij is the “Einstein tensor”. This last step must be found to arrive to a compact 
calculus of the 16 metric tensors, gij,  and of the gravitational constant or scalar, (-8G). As 
we shall show now. 
 Consequences considering G as a scalar 
So we consider, now, the gravitational constant, (- 8G/c4,  with velocity of light, c=1),   as 
a scalar, because  we know that with the presence of the fifth force, as an external force 
on the gravitational field, may modify the gravitational “constant” G, see the  
factor G (1+  e-  r1,2 ) varying in the phenomenological formula (1); then assuming: 
 
(38)                             Ĝ = Ĝ(x) = (- 8G)  = scalar function of x. 
 
we take contravariant equation (33), in convariant differentiation, with condition (37), so: 
 
(39)   0 = (Rij  - (1/2) gij R) ; i  = (-8G) Tij ; i + (-8G) ; i Tij  – {[(1+k)/2] 2 [(-8G)Tij]}; i 
 
Here (39) is a differential equation where it shall be found by “computational mathematics” 
the scalar function (-8G), in a “general” form, (instead who wants to prosecute in the 
“particular” case, with the energy-momentum conservation, putting Tij ; i=0, about other 
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meaningful physical reasons, can do it); knowing that the covariant derivative of a scalar is 
an ordinary gradient: 
 
(39a)                                      (-8G) ; i  =   (-8G)/xi, 
 
instead of four equations with index j=0,1,2,3 in equation (39), we multiply both members 
of it by the term, four-vector velocity, Uj, becoming one equation of scalar (-8G), as 
follows: 
 
(40)               0 = (-8G) Tij ; i Uj + ((-8G)/xi)Tij Uj  – [(1+k)/2]{ 2 [(-8G)Tij]}; i Uj 
 
Or using in this equation (40), the d’Alembertian operator (31a), where necessary, and 
applying the covariant derivative after (39a) and (36), becomes in an extended, spreading 
formalism, useful for who wants to find the scalar function Ĝ = (-8G) with 
“computational mathematics” or “numerical relativity”, (see full calculations below in 
appendix (a)); which becomes the following: 
 (40a)     0 = Ĝ Uj Tij + Ĝ Uj iinTnj + Ĝ Uj jinTin  +  Uj Tij  Ĝ - Ḱ Uj Tij     [ gko   2 Ĝ       ] +                                            x i                                                                   x i                      x i           x k  x o    
 
     + Ḱ Uj Tij    [ gko mko   Ĝ  ]  - Ḱ Uj Ĝ      [ gko   2 Tij       ] - Ḱ Uj Ĝ iin [ gko   2 Tnj       ] - 
                    x i                  x m                   x i           x k  x o                                  x k  x o   
 
    - Ḱ Uj Ĝ jin [ gko   2 Tio       ] - Ḱ Uj Ĝ      [ gko mko   Tij  ] - Ḱ Uj Ĝ iin [ gko mko   Tnj  ] - 
                                 x k  x o                   x i                   x m                                       x m  
       - Ḱ Uj Ĝ jin [ gko mko   Tin  ]                                           x m 
 
where       Ĝ = Ĝ(x) = (- 8G),  (to be found explicitly),  and Ḱ = (1+k)/2. 
 
So the general system of the new Einstein’s field equations, modified for the presence of the “fifth force” in the gravitational field, where, by “computational calculus”, we can 
find the 16 values of the metric tensors,  gij, and the value of the new “gravitational scalar 
variable”, (-8G), is the following: 
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SYSTEM (41)(considering G a gravitational scalar variable, and not a universal constant): 

  
System (41) permits to find in totally 11 variables by “computational mathematics”: the 10 
variables,  gij, (instead of 16 variables, because gij is symmetric), joining the gravitational 
variable as a scalar function, (-8G). Where ,  and k are three constants: =0.01:0.001, 
is the intensity of the fifth force, called ipercharge, in range -1 =100:1000 meters;  
and k = 1- (d/ dt)2  = constant, see (23). 
It would be more elegant to put the field equations (41), in one new compact Einstein’s 
field equation, in a more simplified way, or leaving it to a good researcher as a skilful 
calculus. 
 
 
Conclusion 
   In this paper we have obtained a modified Einstein’s field equations by introducing the 
fifth force of Gibbons-Fischbach. We invite to look for numerical solutions in the case of a 
static field with spherical symmetry. It would be interesting to understand if there are 
*singularities or not.  
   The  system (41), must be resolved with “computational mathematics”, to verify if there 
are present or not *singularities in the metric tensors gij. It is well known that in the standard Schwarzschild space-time there is a *singularity in the 
metric and it would be interesting if our approach leads to a *singularity-free metric or not. 
Indeed, this would have consequences about the existence of black holes. 
   We think that it’s possible to arrive, in another way, to a complete compact Einstein’s 
field equation, (33), about its second member with the energy-momentum tensor, 
introducing the “fifth force” in General Relativity, by using another approach, instead of 
using “Newtonian limit”: the theorems, properties and methods of the “Continuum 
Mechanics Theory”  (because the formula (1) of Gibbons and Fischbach has “elastic” 
properties as a stretching and squeezing spring holding two masses, that is a repulsive 
and  an attractive gravitational force). And after we can apply the “Principle of Minimum 
Action”, trying to find the opportune Langragian of this “elastic” continuum ensemble of 
celestial masses, (considering the universe as a many body, n-body system). 
   Nevertheless it’s necessary and it must be verified the orbitals of the planets and stars, 
for the consistency of the new modified Einstein’s field equations (33), found by 
introducing the fifth force in the general relativity theory.  
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Notes for who can use “computational mathematics” or even “numerical relativity”: Good researchers, who has the software of “computational mathematics”, (I haven’t), 
can analyse if the metric tensors, gij, have *singularities or not, in the following system of equations (9a), (13b), (34) and (41); considering a spherically symmetric static star of 
radius R and mass M, in the spherical polar coordinates of  x, (see Weinberg S. 1972 
chapter  8.2 or better 11.1).  
Just to see if black holes exist or not. 
 
*singularity of metric tensors gij , means if its values go to infinite varying radius r to ro:  lim(rro)gij(r)= , where ro=2Gm(R)=”Schwarzschild radius”, or for another singularity 
where, ro=0, at the center of the star. 
 
 
 
   
Appendix (a): 
To find the scalar function, Ĝ = Ĝ(x) = (- 8G) “implicitly”, we start from equation (40), using the Leibniz property of 
covariant derivative (see [9] (4.6.14)), which becomes: 
 
(40b)         0 = Ĝ Tij ; i + Ĝ; i Tij  –  Ḱ [2 Ĝ] ; i Tij - Ḱ Ĝ [2 Tij]; i , where Ḱ = (1+k)/2. 
 
Applying first the II d’Alembertian operator, (31a), on equation (40b), we obtain:  
(40b)    0 = Ĝ Tij ; i + Ĝ; i Tij  –  Ḱ Tij [gko   2 Ĝ       - gko mko   Ĝ  ] ; i  - Ḱ Ĝ [gko   2 Tij       - gko mko   Tij  ] ; i                                                                x k  x o                     x m                       x k  x o                     x m 
 
Now, we do the covariant derivative, substituting (36) and (39a): 
 
(40c)      0 = Ĝ [(Tij /xi) + iin Tnj + jin Tin] + (Ĝ /xi) Tij  -  
                    
                     - Ḱ Tij {      [gko   2 Ĝ     ]  -    [gko mko   Ĝ  ] } – 
                                 x i         x k  x o        x i                 x m 
                             

- Ḱ Ĝ { [    (gko   2 Tij      ) + iin (gko   2 Tnj      )] + jin (gko   2 Tin     )] -                                   x i        x k  x o                      x k  x o                      x k  x o  
 
                     -   [    (gko mko   Tij  ) + iin (gko mko   Tnj  ) + jin (gko mko   Tin  )] }                              x i                 x m                           x m                              x m 
 
Multiplying each term of (40c) by the four-vector velocity U   =  dx / d, we obtain (40a) as expected in an implicit aspect; 
useful to obtain the scalar function Ĝ = Ĝ(x) = (- 8G), together with the field equation (33), by using “computational 
mathematics” or “numerical relativity”. In the future if some researcher can use resolve the differential equation, (40a), (of 
third degree), to obtain explicitly, Ĝ = Ĝ(x) = (- 8G), is welcome.  
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WARNING: INTERNATIONAL SAFETY FLIGHT RULES for students of POLITICAL 
SCIENCE UNIVERSITY: 
 
Every life must be respected.  The automated flight on the moon, without astronauts, is 
helpful to improve the expansion of the humanity, just trying to plant on the moon right 
vegetables and proper fruits on its artificial ground and artificial climate that permits the 
plants to grow. Every life must be respected. The automated spacecraft or flying object 
that goes on the moon must take off or start flying only from the center of the oceans, NOT 
over lands, to crash on people. The trajectories of the automated flying object that goes on 
the moon, must be away from countries, to not crash hurting families or any people, and to 
not crash down hurting persons, when landing on the water of the center of the ocean 
(with the parachute?). Goodluck in your administration and politics! 
 
WARNING_ALERT: 
About weight and falling: “The heavy and big fruits or vegetables as water-melons and 
pumpkins grow on the plane earth 
for our security; but little and light fruits as apples grow on the trees, so falling down aren’t 
dangerous to our or everyone lifes life”. 
-------------------------------------------------------------------------------------------------------------------- 
“Mathematics” or “math and geometry” subjects” is a bad evil that must be handled very 
carefully, on human societies that uses it as a tool (like a hammer); to be used carefully 
and  not to use it as an arm. For example, (statistics or not statistics, economy or not 
economy),  see what "mathematics" caused on human societies. For example, a lot of 
accidents in the societies with projects: projects of cars that crash over people, airplanes 
that fall over families, buildings with heavy stoney or rocky roofs that can fall over people, nuclear reactors that can explode over families, etc.  
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Title: BLACK HOLES DO NOT EXIST.   
OTHER LOGICAL MATHEMATICAL DEMONSTRATION THAT BLACK HOLES DO NOT 
EXIST USING WEINBERG STEVE BOOK. (for who knows physics). 
  
1) Black holes do not exist? 
2) No. Black holes do not exist. 
1) Why? Show the demonstration. 2)This is the demonstration. 
2) Get the book of author Steven Weinberg, “Gravitation and Cosmology” 1972, at chapter 8.2 and 
follow the wrong logic of Schwarzschild. 
So it says at chapter 8.2 page 179, that “the field equations for empty space are” 
Rμν=0. 
But if it’s an empty space it means that the mass of any astrophysical object is zero, (for example 
stars which mass is zero M=0); so even the gravitational potential φ=-GM/r = 0, (see (3.4.4), 
Weinberg book, where r is the radius of the star); and so even the energy-momentum tensor is zero, 
Tij=0(see chapter 2.8 and 5.3 and formula (5.3.4), Weinberg book). 
So when in the book of Weinberg says on page 180 writing about the formula: rB(r)=r+constant1 
(8.2.9) where B(r) = gtt is the time metric tensor: “To fix the constant1 of integration we recall that 
at great distances from a central mass M…” that for hypothesis of empty space the mass is zero 
M=0, the gravitational potential is zero, φ= - GM/r = 0 implies B=1 and so constant1=0 and so even 
the radius metric tensor A=grr. That means curvature with flat space when Rμν=0. So the formula of 
Schwarzschild is wrong: B(R)=[1-2MG/r] (see wrong logic and formula (8.2.10), Weinberg book). 
And this means, even that it’s failed the use of Schwarzwild radius R that satisfies a singularity as 
2MG/R =1. So black holes horizon doesn’t exist. Further considerations in future papers will be 
made introducing the “fifth force” of GibbonsG.W.-Fischbach.E 1986, in the theory of general 
relativity together with the energy-momentum tensor Tij. 
So if we found that the metric tensors B=1 and A=1 for any radius r in empty space, that means that 
black holes do not exist even for radius r going to 0, r-->0. 
So stars do not become black holes. And black holes do not exist in the universe. 
 
 
In superconductivity experiments with the so called superfluid experiments, approaching to  
temperatures of 0.3Kelvin, it's easy to see the effects of the fifth force. 
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